
Introduction to the
Japanese Character Set

Yoshinori Matsunobu
Senior Consultant
MySQL AB

Speaker’s Profile
Yoshinori Matsunobu
Senior Consultant, working at MySQL Japan

- Performance Tuning

- DBA

- MySQL Cluster

- HA/Scale-out Architecture Design/Implementation

- Migration

- i18n

Authored four MySQL books in Japanese

Agenda
The essences of the Japanese Character Set

- Multi-byte character

- A lot of character sets and encodings

- Character code conversion

Hot issues

- UTF-8 : 4-byte characters

- Shift_JIS : 0x5C escape problem

- Full text search

What is multi-byte character?
Two or more bytes per one character

1 byte = 8bit, 28 = 256

Is “256” enough to handle all characters (symbols)
in your country ?

Alphabet -- A-Z, a-z (26*2=52)
Number -- 0-9 (10)
Others -- (space, tab, semicolon, etc..)

あ 0x82A0e.g.

ASCII
7 bit Encoding
Scheme
(0x00 - 0x7F)

Most Significant Bit is
always 0
(1byte = 1character)

Control Character
(0x00 – 0x1F, 0x20, 0x7F)

Total 34

Graphic Character
(0x21 – 0x7E)

Total 94

0 1 2 3 4 5 6 7
0 NUL DLE SP 0 @ P ` p
1 SOH DC1 ! 1 A Q a q
2 STX DC2 “ 2 B R b r
3 ETX DC3 # 3 C S c s
4 EQT DC4 $ 4 D T d t
5 ENQ NAK % 5 E U e u
6 ACK SYN & 6 F V f v
7 BEL ETB ‘ 7 G W g w
8 BS CAN (8 H X h x
9 HT EM) 9 I Y i y
A LF SUB * : J Z j z
B VT ESC + ; K [k {
C FF FS , < L ¥ l |
D CR GS - = M] m }
E SO RS . > N ^ n ~
F SI US / ? O _ o DEL

Upper 3bit

L
o
w
e
r

4
b
i
t

Japanese Characters
Hiragana (Over 50 characters)

1 byte(256) is not enough to handle Japanese characters.
-> multi-byte character was adopted

A set of these characters is called “Character Set”

あいうえお かきくけこ さしすせそ たちつてと なにぬねの …

Katakana (Over 50 characters)

Kanji (Over 6,000 characters)

アイウエオ カキクケコ サシスセソ タチツテト ナニヌネノ …

ｱｲｳｴｵ ｶｷｸｹｺ ｻｼｽｾｿ ﾀﾁﾂﾃﾄ ﾅﾆﾇﾈﾉ …
* Half-Width Katakana:

亜 哀 愛 悪 握 圧 扱 安 暗 案 …

Japanese Character Set
Japan Industrial Standard (JIS) specifies Japanese Character Set
Sometimes updated

Vendor defined Japanese Character Set

Why are there so many character sets?
- There are too many characters (Kanji) in Japan. It is difficult to define cover area.

JIS X 0208 is subset of them. NEC/IBM Kanji supplements JIS X 0208.

- The number of symbols is increasing

e.g. Cellular phone specific characters

Some advanced author sometimes create new symbols

JIS X 0208:1990 -> JIS X 0208:1997
JIS X 0213:2000 -> JIS X 0213:2004

NEC Kanji, IBM Kanji

Character Set and Encoding

Character Set and Encoding are different meanings, but
usually being used without distinction
There are several encodings (Shift_JIS,EUC-JP,UTF-8,etc..)

Shift_JIS is the most widely used encoding now.
Gradually moving to Unicode (UTF-8)

Each code mapping is different from each other

JIS X 0208

Character Set

Shift_JIS

EUC-JP

UTF-8

Encoding

あ

あ 0x82A0

0xA4A2

0xE38182

あ

あ

Size of Japanese Characters
Shift_JIS
- All ASCII characters and Half-width katakana are 1 byte

- The others are 2 bytes

EUC-JP
- All ASCII characters are 1 byte

- Most of Japanese characters are 2 bytes

- The rest are 3 bytes

UTF-8
- All ASCII characters are 1 byte

- Most of Japanese characters are 3 bytes

- The rest of Japanese characters are 4 bytes
*This is one of the reason that Japanese people
do not want to use UTF-8.

Character Set and Encoding (2)

There are several character sets

That’s why there are too many encodings,
which make us confused

Character Set

JIS X 0208:1997
JIS X 0208:1997 + NEC/IBM Kanji
JIS X 0213:2004

Shift_JIS
encoding

EUC-JP
encoding

Unicode
encoding

Shift_JIS EUC-JP UTF-8
CP932,Windows-31J EUC-JP-Open UTF-8
Shift_JIS-2004 EUC-JIS-2004 UTF-8

Supported Encodings in MySQL

Shift_JIS EUC-JP Unicode

sjis cp932 ujis eucjpms utf8 ucs2

4.0

4.1

5.0

Character Set

JIS X 0208:1997
JIS X 0208:1997 + NEC/IBM Kanji
JIS X 0213:2004

Shift_JIS
encoding

EUC-JP
encoding

Unicode
encoding

sjis ujis utf8
cp932 eucjpms utf8

Example

$ mysql --default-character-set=cp932

mysql> create table t1 (c1 varchar(100)) charset cp932;
Query OK, 0 rows affected (0.08 sec)

mysql> insert into t1 values(‘ ');
Query OK, 1 row affected (0.14 sec)

mysql> select c1, char_length(c1), length(c1) from t1;
+----------+-----------------+------------+
| c1 | char_length(c1) | length(c1) |
+----------+-----------------+------------+
| | 4 | 8 |
+----------+-----------------+------------+
1 row in set (0.00 sec)

Hiragana

あいうえ

あいうえ

Failed example
$ mysql

mysql> create table t1 (c1 varchar(100)) charset cp932;
Query OK, 0 rows affected (0.08 sec)
mysql> insert into t1 values(‘ ');
Query OK, 1 row affected, 1 warning (0.08 sec)

mysql> show warnings;
+---------+------+---+
| Level | Code | Message |
+---------+------+---+
| Warning | 1265 | Data truncated for column 'c1' at row 1 |
+---------+------+---+

mysql> select c1, char_length(c1), length(c1) from t1;
+----------+-----------------+------------+
| c1 | char_length(c1) | length(c1) |
+----------+-----------------+------------+
| ???????? | 8 | 8 |
+----------+-----------------+------------+ Well known as “mojibake”

あいうえ

Character code conversion

Japanese characters have different code point
for each encoding

Sometimes code conversion between
different encodings is needed
e.g : 0x82A0(Windows Shift_JIS) <-> 0xA4A2(Linux EUC-JP)

Shift_JIS

EUC-JP

UTF-8

あ0x82A0

0xA4A2

0xE38182

あ

あ

Web/App
Server

Linux
(EUC-JP)

Web/App
Server

Windows
(Shift_JIS)

0x82A0

0xA4A2

MySQL Code conversion algorithm

UCS-2 facilitates conversion from one encoding to another
MySQL has code conversion mapping to/from UCS-2
(See strings/ctype-cp932.c for example)
If client encoding and server encoding are the same, code
conversion doesn’t occur
If conversion fails, the character is converted to “?”

Shift_JIS

EUC-JP

UTF-8

あ0x82A0

0xA4A2

0xE38182

あ

あ

UCS-2
U+3042

Shift_JIS

EUC-JP

UTF-8

あ0x82A0

0xA4A2

0xE38182

あ

あ

Client Server (Column)

Failed character conversion
$ mysql
mysql> insert into t1 values(‘ ');
Query OK, 1 row affected, 1 warning (0.08 sec)

mysql> show warnings;
+---------+------+---+
| Level | Code | Message |
+---------+------+---+
| Warning | 1265 | Data truncated for column 'c1' at row 1 |
+---------+------+---+

mysql> select c1, char_length(c1), length(c1) from t1;
+----------+-----------------+------------+
| c1 | char_length(c1) | length(c1) |
+----------+-----------------+------------+
| ???????? | 8 | 8 |
+----------+-----------------+------------+

Since client encoding is not specified, default MySQL encoding “latin1” is used

latin1 doesn’t support Japanese Characters. Changing client encoding is needed.

my.cnf parameter “skip-character-set-client-handshake” helps
(client encoding is set to the same value of “character-set-server”)

あいうえ

How to check client encoding

mysql> SHOW VARIABLES LIKE 'char%';
+--------------------------+---------------------------------------+
| Variable_name | Value |
+--------------------------+---------------------------------------+
character_set_client	latin1
character_set_connection	latin1
character_set_database	cp932
character_set_filesystem	binary
character_set_results	latin1
character_set_server	cp932
character_set_system	utf8
character_sets_dir	D:¥mysql-5.0.38-win32¥share¥charsets¥
+--------------------------+---------------------------------------+

Client Encoding

How to check table/column encoding

mysql> SHOW CREATE TABLE t1¥G
*************************** 1. row ***************************

Table: t1
Create Table: CREATE TABLE `t1` (
`c1` varchar(12) default NULL

) ENGINE=InnoDB DEFAULT CHARSET=cp932
1 row in set (0.00 sec)

mysql> SELECT column_name, character_set_name, collation_name FROM
information_schema.columns WHERE table_name='t1';
+-------------+--------------------+-------------------+
| column_name | character_set_name | collation_name |
+-------------+--------------------+-------------------+
| c1 | cp932 | cp932_japanese_ci |
+-------------+--------------------+-------------------+
1 row in set (0.02 sec)

Relationship with Application Layer

MySQL
Server
MySQL
Server

1. Read HTTP Parameter
HttpServletRequest
#setCharacterEncoding
(“Windows-31J”)

2. Pass to Database Driver
characterEncoding=Windows-31J
Statement#setString()

3. Store into MySQL
(Conversion if needed)

5. Return HTML stream
contentType="text/html;
charset=Windows-31J"

4. Get from Database Driver
ResultSet#getString()

Windows-31J -> UCS-2

UCS-2 -> Windows-31J
Windows-31J ->UCS-2

UCS-2 -> Windows-31J

Web/App
Server

Web/App
Server

Web/App
ServerBrowser

Hot Issue in Japan
The essences of the Japanese Character Set

- Multi-byte character

- A lot of character sets and encodings

- Character code conversion

Hot issues

- UTF-8 : 4-byte characters

- Shift_JIS : 0x5C escape problem

- Full text search

Unicode

Intended to support worldwide characters

Fixed Length
UCS-2, UCS-4

Variable Length
UTF-16, UTF-8

UCS-2 and UCS-4
UCS-2
2-byte Fixed Length. 216= 65,536 characters

UCS-4
4-byte Fixed Length. 231≒ 2 billion characters

BMP

1 Plane
65,536

Plane 0

Plane 255

Plane 1

Group 0 Group 1 Group 127

UCS-2 supports only Plane 0, Group 0(BMP)
UCS-4 supports 256 Planes and 128 Groups.

216 * 28(256) * 27(128) = 231

……

(BMP = Basic Multilingual Plane)

UCS-2 Overflow

Most of characters are covered by UCS-2.

But some Japanese characters (some of JIS X 0213:2004)
are not covered by UCS-2.

Windows Vista supports JIS X 0213:2004 as standard
character set in Japan.

JIS X 0213:2004 is available even for Windows XP users
if they applied Service Pack (KB927489) .

UCS-2 doesn’t meet our needs !

UTF-8 and UTF-16
Variable length encoding of UCS-2 and UCS-4

UTF-16
- 2-byte or 4-byte length

- All UCS-2 characters are mapped to 2 bytes

- Not all UCS-4 characters are supported (1 Million, supposed to be fine)

- Supported UCS-4 characters are mapped to 4 bytes

UTF-8
- There are some specifications/implementations. RFC3629(4bytes) is the latest.

- From 1 byte to 6 bytes (RFC 2279) Fully compliant with UCS-4

- From 1 byte to 4 bytes (RFC 3629) Fully compliant with UTF-16

- From 1 byte to 3 bytes Full compliant with UCS-2

Unicode coverage area

UTF-8 (1-6 bytes: RFC2279)
UCS-4

2 Billion

UTF-8 (1-4 bytes: RFC3629)
UTF-16, some of UCS-4

1 Million

UTF-8 (1-3 bytes)
UCS-2
65,536

Not Needed

Needed

MySQL Unicode Implementation

Internally handles all characters as UCS-2.

UCS-4 is not supported.

UCS-2 for client encoding is not supported.

UTF-8 support is up to 3 bytes. 4-byte UTF-8 is not
supported now.

Currently being discussed to support in future builds

*For a long time and many platforms
(e.g. J2SE <= 1.4), UTF-8 support only 3-byte length
(only UCS-2. So, not just MySQL!) ☺

Example of 4-byte UTF-8 problem
$ mysql --default-character-set=utf8

mysql> CREATE TABLE t1 (c1 VARCHAR(30)) CHARSET=utf8;
Query OK, 0 rows affected (0.09 sec)

#’ab’ + 4-byte UTF-8 + ’cdef’
mysql> INSERT INTO t1 VALUES(0x6162F0A0808B63646566);
Query OK, 1 row affected, 1 warning (0.05 sec)

mysql> SELECT c1, HEX(c1) FROM t1;
+------+---------+
| c1 | HEX(c1) |
+------+---------+
| ab | 6162 |
+------+---------+
1 row in set (0.00 sec)

- Invalid character(4-byte UTF-8) is truncated.
- Even valid characters after invalid character are also truncated.

Possible workarounds(1)

Using VARBINARY/BLOB types
- Can store any binary data

- Always case-sensitive

- FULLTEXT index is not supported

- Application code modification might be needed

e.g. resultSet.getString(“string_column”)

-> new String(resultSet.getBytes("blob_column"),"UTF-8")

- A specific configuration parameter might be introduced to
Connector/J and Connector/.NET in the near future builds

Possible workarounds(2)
Using UCS-2 for column encoding

$ mysql --default-character-set=utf8
mysql> CREATE TABLE t1 (c1 VARCHAR(30)) CHARSET=ucs2;
Query OK, 0 rows affected (0.09 sec)

#’ab’ + 4-byte UTF-8 + ’cdef’
mysql> INSERT INTO t1 VALUES(_utf8 0x6162F0A0808B63646566);
Query OK, 1 row affected, 1 warning (0.05 sec)

mysql> SELECT c1, HEX(c1) FROM t1;
+------------+--+
| c1 | HEX(c1) |
+------------+--+
| ab????cdef | 00610062003F003F003F003F0063006400650066 |
+------------+--+
2 rows in set (0.03 sec)

- Better than truncated
- Every character (even ASCII character) consumes 2 bytes

Possible workarounds(3)

Stop using Unicode,
then use Shift_JIS(cp932) or EUC-JP(eucjpms)
- All Japanese characters are stored/retrieved successfully

- Code conversion of JIS X 0213:2004 characters
is not currently supported

Shift_JIS
The most widely used character encoding in Japan

1 or 2 byte encoding
- All ASCII characters and Half-width katakana are 1 byte

- The rest are 2 bytes

2nd byte might be in ASCII graphic code area (0x40 - 0x7E)
ソ -- 0x835Ce.g

If the first byte value is:
0x00 – 0x7F -> 1-byte characters
0xA0 – 0xDF -> 1-byte characters
The rest -> 2-byte characters

0x5C Escape problem

Some Shift_JIS characters contain 0x5C in 2nd byte.
― ソ Ы Ⅸ 噂 浬 欺 圭 構 蚕 十 申 曾 箪 貼 能 表 暴 予 禄
兔 喀 媾 彌 拿 杤 歃 濬 畚 秉 綵 臀 藹 觸 軆 鐔 饅 鷭 偆 砡 纊 犾

ソ -- 0x835C

What is 0x5C ? --> escape sequence (¥ : backslash in the US)

mysql> SELECT 'AAA ¥n BBB'
AS c1;
+-----------+
| c1 |
+-----------+
| AAA
BBB |
+-----------+

mysql> SELECT '¥100 JPY';
+---------+
| 100 JPY |
+---------+
| 100 JPY |
+---------+
mysql> SELECT '¥¥100 JPY';
+----------+
| ¥100 JPY |
+----------+
| ¥100 JPY |
+----------+

Single 0x5C -> removed

0x5C5C -> 0x5C

0x5C6E -> 0x0A

Escape Rules in MySQL

Character Corruption Example
$ mysql

mysql> create table t1 (c1 varchar(30));
Query OK, 0 rows affected (0.09 sec)

mysql> insert into t1 values(‘ abc');
Query OK, 1 row affected (0.08 sec)

mysql> select c1, hex(c1) from t1;
+------+----------+
| c1 | hex(c1) |
+------+----------+
| bc | 83616263 |
+------+----------+
1 row in set (0.02 sec)

0x83 + 616263
(single 0x5C is
truncated)

0x835C + 616263

Conversion logic needs to pay special care to Shift_JIS encoding
in order not to truncate 0x5C in 2nd byte.
(MySQL does support this for sjis/cp932 client encoding)

ソ

ヂ

Full text search in Japanese
Native MySQL doesn’t support full text search in Japanese
- Korean and Chinese are the same (Known as CJK issue)

Japanese words are not delimited by space
English:
MySQL, the most popular Open Source SQL database management
system, is developed, distributed, and supported by MySQL AB.

Japanese:
MySQLは最も人気のあるオープンソースのDBMSで、
MySQL ABによって開発、配布、サポートが行なわれています。

Full text search in Japanese (general solutions)
Dictionary based indexing
- Dividing words by pre-installed dictionary

N-Gram indexing
- Dividing words by N letters (N=1,2,3..)

Implemented for MySQL by one of our partners
- MySQL + Senna

- Officially supported by Sumisho Computer Systems

Conclusion
Character Set and Encoding
- There are many character sets in Japan

JIS X 0208, Vendor Defined Kanji (NEC/IBM Kanji), JIS X 0213

- There are many encodings in Japan

Shift_JIS(sjis,cp932), EUC-JP(ujis, eucjpms), Unicode(utf8)

4-Byte UTF-8 support is needed
- Some Japanese characters are not covered by UCS-2.

Shift_JIS is dangerous, but widely used
- 0x5C problem

- Widely used for historical reasons

Thanks for coming!

Contact
ymatsunobu@mysql.com

	Introduction to the�Japanese Character Set
	Speaker’s Profile
	Agenda
	What is multi-byte character?
	ASCII
	Japanese Characters
	Japanese Character Set
	Character Set and Encoding
	Size of Japanese Characters
	Character Set and Encoding (2)
	Supported Encodings in MySQL
	Example
	Failed example
	Character code conversion
	MySQL Code conversion algorithm
	Failed character conversion
	How to check client encoding
	How to check table/column encoding
	Relationship with Application Layer
	Hot Issue in Japan
	Unicode
	UCS-2 and UCS-4
	UCS-2 Overflow
	UTF-8 and UTF-16
	Unicode coverage area
	MySQL Unicode Implementation
	Example of 4-byte UTF-8 problem
	Possible workarounds(1)
	Possible workarounds(2)
	Possible workarounds(3)
	Shift_JIS
	0x5C Escape problem
	Character Corruption Example
	Full text search in Japanese
	Full text search in Japanese (general solutions)
	Conclusion
	Thanks for coming!

